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> Inclusion-exclusion formulas tailored to a set system,

> describe inclusion-exclusion formulas via abstract simplicial complexes,

> interpret |E properties in terms of Euler characteristic () of sub-complexes,
> use the topological space associated to a simplicial complex to control its Y.
> Delaunay = nerve(Voronoi)

> nerve theorem
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Theorem. [G-Matousek-Patak-Safernova-Tancer '15]
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Theorem. [Bjorklund-Husfeld-Koivisto’09]
For every k, there exists an algorithm that decides whether a
given n-vertex graph is k-colorable in time O(2"™n polylogn).
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> Topology-inspired model of random simplicial complexes.

Theorem. [Bjorklund-Husfeld-Koivisto'09]
For every k, there exists an algorithm that decides whether a
given n-vertex graph is k-colorable in time O(2"™n polylogn).

Could simplified |E help getting this down? /
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> ... exponentially many variables, some NP-hard variant.
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> Let 7 € V(F') and let 7’ be the union N(F)
of the min. non-faces of K contained in 7.

Goal: given F' ={a1,as,...,a,} find a small simplicial complex K C 2[n]
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F ={ay,a9,...,a,} a set system, V(F) its Venn diagram.
Goal: K C 2" st. V7 € V(F), K|[r] is a cone.

< no T € V(F) is a union of min. non-faces of K.

Algorithm:

> For each 7 € V(F') select some element w(7) € 7.

> Define K.y ={c € N(F): V0 C o, dr € V(F) s.t. w(r) € 0 C 7}.

> For every selector w(-), V7 € V(F'), K, .)|T] is a cone.
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Is there a selector w(-) such that K,y is small?
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Simplifying Inclusion—Exclusion Formulas
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Fix a permutation p on [n],
consider the order p(1) < p(2) < ...

and set w,(7) = min_ 7.

< p(n)

Label V(F) ={m,72,...,Tm }.

def

[' = the m X n incidence matrix between V(F') (rows) and F' (columns

def

I, = the column-permutation of I': (I',),(;y = I';.

Ky =10 € N(F): V0 Co,dr c V(F) st. w(r) € C1}.

Large simplex in K, = large pattern in T,

> Let o = {il,ig,...,ik} c K,
with p(i1) < p(iz) < ... < p(in).

> forevery 1 <s <k 3T, € V(F)

Tj. contains is,is11,...,ik and no ¢ with p(i) < p(is).

J3

J1
J2
J4
J5

). F cuk/

p=(1,3,2,4)
1<3<2<4
il iQ i3 i4 i5

0---0( 0 O 1 1 7 1|7
0---0 1 1 1 1 7 1 |7
0---0 ] 0 1 1 1 7 1 |7
0---0 10 0 O 1 7 1 |7
0---0 1 0 0 O 0O 10---0| 117




p = uniformly chosen random permutation of [n].

p(k) = probability that /&, contains at least one simplex of dimension k.

Proposition. [GMPST'15]
1
D ((2€lnm] {2 + In L—D < o

Inm
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1. Start with a graph G on n vertices.
2. Consider the set system F' = {A,As,..., A}

T = the set of inclusion-max independent sets of G.
def .
A@‘ = {(0'170'2, c ,O'k) S Ik: (4 ¢ U?:lgj}-
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4. ... on which fast Zeta transform can be performed.

Is V(F') sparse?

< How many sets write as the union O(3"/3) fork =1 , and
of k£ inclusion max. independent sets? O(n12™%) for k = 2



Thank you for your attention!



